XLM-RoBERTa
The XLM-RoBERTa model was proposed in Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook’s RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data.
XLMRobertaAdapterModel
- class adapters.XLMRobertaAdapterModel(config)
XLM-Roberta Model transformer with the option to add multiple flexible heads on top.
This model inherits from [PreTrainedModel]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
- Parameters
config ([XLMRobertaConfig]) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [~PreTrainedModel.from_pretrained] method to load the model weights.
- forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, head=None, output_adapter_gating_scores=False, output_adapter_fusion_attentions=False, **kwargs)
The [XLMRobertaAdapterModel] forward method, overrides the __call__ special method.
<Tip>
Although the recipe for forward pass needs to be defined within this function, one should call the [Module] instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
</Tip>
- Parameters
input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [AutoTokenizer]. See [PreTrainedTokenizer.encode] and [PreTrainedTokenizer.__call__] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional) –
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:
1 for tokens that are not masked,
0 for tokens that are masked.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –
Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]:
0 corresponds to a sentence A token,
1 corresponds to a sentence B token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) –
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].
[What are position IDs?](../glossary#position-ids)
head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:
1 indicates the head is not masked,
0 indicates the head is masked.
inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.
output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
return_dict (bool, optional) – Whether or not to return a [~utils.ModelOutput] instead of a plain tuple.