Adapter Training
Classes and methods related to training adapters.
- class adapters.training.AdapterArguments(train_adapter: bool = False, load_adapter: Optional[str] = '', adapter_config: Optional[str] = 'seq_bn', load_lang_adapter: Optional[str] = None, lang_adapter_config: Optional[str] = None)
The subset of arguments related to adapter training.
- Parameters
train_adapter (bool) – Whether to train an adapter instead of the full model.
load_adapter (str) – Pre-trained adapter module to be loaded from Hub.
adapter_config (str) – Adapter configuration. Either a config string or a path to a file.
load_lang_adapter (str) – Pre-trained language adapter module to be loaded from Hub.
lang_adapter_config (str) – Language adapter configuration. Either an identifier or a path to a file.
- adapters.training.setup_adapter_training(model, adapter_args: AdapterArguments, adapter_name: str, adapter_config_kwargs: Optional[dict] = None, adapter_load_kwargs: Optional[dict] = None)
Setup model for adapter training based on given adapter arguments.
- Parameters
model (_type_) – The model instance to be trained.
adapter_args (AdapterArguments) – The adapter arguments used for configuration.
adapter_name (str) – The name of the adapter to be added.
- Returns
A tuple containing the names of the loaded adapters.
- Return type
Tuple[str, str]
- class adapters.trainer.AdapterTrainer(model: Union[PreTrainedModel, Module] = None, args: TrainingArguments = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Union[Dataset, IterableDataset, datasets.Dataset]] = None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset], datasets.Dataset]] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, processing_class: Optional[Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]] = None, model_init: Optional[Callable[[], PreTrainedModel]] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[Optional[Optimizer], Optional[LambdaLR]] = (None, None), preprocess_logits_for_metrics: Optional[Callable[[Tensor, Tensor], Tensor]] = None, adapter_names: Optional[List[List[str]]] = None, **kwargs)
- create_optimizer()
Setup the optimizer.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer’s init through optimizers, or subclass and override this method in a subclass.
- class adapters.trainer.AdapterTrainerCallback(trainer)
- on_step_end(args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs)
Event called at the end of a training step. If using gradient accumulation, one training step might take several inputs.
- on_train_begin(args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs)
Event called at the beginning of training.
- class adapters.trainer.Seq2SeqAdapterTrainer(model: Union[PreTrainedModel, Module] = None, args: TrainingArguments = None, data_collator: Optional[DataCollator] = None, train_dataset: Optional[Union[Dataset, IterableDataset, datasets.Dataset]] = None, eval_dataset: Optional[Union[Dataset, Dict[str, Dataset], datasets.Dataset]] = None, tokenizer: Optional[PreTrainedTokenizerBase] = None, processing_class: Optional[Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]] = None, model_init: Optional[Callable[[], PreTrainedModel]] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, callbacks: Optional[List[TrainerCallback]] = None, optimizers: Tuple[Optional[Optimizer], Optional[LambdaLR]] = (None, None), preprocess_logits_for_metrics: Optional[Callable[[Tensor, Tensor], Tensor]] = None, adapter_names: Optional[List[List[str]]] = None, **kwargs)