DistilBERT

The DistilBERT model was proposed in the blog post Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT, and the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. DistilBERT is a small, fast, cheap and light Transformer model trained by distilling Bert base. It has 40% less parameters than bert-base-uncased, runs 60% faster while preserving over 95% of Bert’s performances as measured on the GLUE language understanding benchmark.

Note

This class is nearly identical to the PyTorch implementation of DistilBERT in Huggingface Transformers. For more information, visit the corresponding section in their documentation.

DistilBertConfig

class transformers.DistilBertConfig(vocab_size=30522, max_position_embeddings=512, sinusoidal_pos_embds=False, n_layers=6, n_heads=12, dim=768, hidden_dim=3072, dropout=0.1, attention_dropout=0.1, activation='gelu', initializer_range=0.02, qa_dropout=0.1, seq_classif_dropout=0.2, pad_token_id=0, **kwargs)

This is the configuration class to store the configuration of a DistilBertModel or a TFDistilBertModel. It is used to instantiate a DistilBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DistilBERT distilbert-base-uncased architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Parameters
  • vocab_size (int, optional, defaults to 30522) – Vocabulary size of the DistilBERT model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling DistilBertModel or TFDistilBertModel.

  • max_position_embeddings (int, optional, defaults to 512) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • sinusoidal_pos_embds (boolean, optional, defaults to False) – Whether to use sinusoidal positional embeddings.

  • n_layers (int, optional, defaults to 6) – Number of hidden layers in the Transformer encoder.

  • n_heads (int, optional, defaults to 12) – Number of attention heads for each attention layer in the Transformer encoder.

  • dim (int, optional, defaults to 768) – Dimensionality of the encoder layers and the pooler layer.

  • hidden_dim (int, optional, defaults to 3072) – The size of the “intermediate” (often named feed-forward) layer in the Transformer encoder.

  • dropout (float, optional, defaults to 0.1) – The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_dropout (float, optional, defaults to 0.1) – The dropout ratio for the attention probabilities.

  • activation (str or Callable, optional, defaults to "gelu") – The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "silu" and "gelu_new" are supported.

  • initializer_range (float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • qa_dropout (float, optional, defaults to 0.1) – The dropout probabilities used in the question answering model DistilBertForQuestionAnswering.

  • seq_classif_dropout (float, optional, defaults to 0.2) – The dropout probabilities used in the sequence classification and the multiple choice model DistilBertForSequenceClassification.

Examples:

>>> from transformers import DistilBertModel, DistilBertConfig

>>> # Initializing a DistilBERT configuration
>>> configuration = DistilBertConfig()

>>> # Initializing a model from the configuration
>>> model = DistilBertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

DistilBertTokenizer

class transformers.DistilBertTokenizer(vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)

Construct a DistilBERT tokenizer.

DistilBertTokenizer is identical to BertTokenizer and runs end-to-end tokenization: punctuation splitting and wordpiece.

Refer to superclass BertTokenizer for usage examples and documentation concerning parameters.

DistilBertTokenizerFast

class transformers.DistilBertTokenizerFast(vocab_file, tokenizer_file=None, do_lower_case=True, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, strip_accents=None, **kwargs)

Construct a “fast” DistilBERT tokenizer (backed by HuggingFace’s tokenizers library).

DistilBertTokenizerFast is identical to BertTokenizerFast and runs end-to-end tokenization: punctuation splitting and wordpiece.

Refer to superclass BertTokenizerFast for usage examples and documentation concerning parameters.

slow_tokenizer_class

alias of transformers.models.distilbert.tokenization_distilbert.DistilBertTokenizer

DistilBertModel

class transformers.DistilBertModel(config)

The bare DistilBERT encoder/transformer outputting raw hidden-states without any specific head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (DistilBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None)

The DistilBertModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, num_choices)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using DistilBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A BaseModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (DistilBertConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) – Sequence of hidden-states at the output of the last layer of the model.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

BaseModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import DistilBertTokenizer, DistilBertModel
>>> import torch

>>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
>>> model = DistilBertModel.from_pretrained('distilbert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
get_input_embeddings()

Returns the model’s input embeddings.

Returns

A torch module mapping vocabulary to hidden states.

Return type

nn.Module

set_input_embeddings(new_embeddings)

Set model’s input embeddings.

Parameters

value (nn.Module) – A module mapping vocabulary to hidden states.

DistilBertModelWithHeads

class transformers.DistilBertModelWithHeads(config)

DistilBert Model transformer with the option to add multiple flexible heads on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (DistilBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

property active_head

The active prediction head configuration of this model. Can be either the name of a single available head (string) or a list of multiple available heads. In case of a list of heads, the same base model is forwarded through all specified heads.

Returns

A string or a list of strings describing the active head configuration.

Return type

Union[str, List[str]]

add_adapter(adapter_name: str, config=None)

Adds a new adapter module of the specified type to the model.

Parameters
  • adapter_name (str) – The name of the adapter module to be added.

  • config (str or dict, optional) –

    The adapter configuration, can be either:

    • the string identifier of a pre-defined configuration dictionary

    • a configuration dictionary specifying the full config

    • if not given, the default configuration for this adapter type will be used

add_classification_head(head_name, num_labels=2, layers=2, activation_function='tanh', overwrite_ok=False, multilabel=False, id2label=None)

Adds a sequence classification head on top of the model.

Parameters
  • head_name (str) – The name of the head.

  • num_labels (int, optional) – Number of classification labels. Defaults to 2.

  • layers (int, optional) – Number of layers. Defaults to 2.

  • activation_function (str, optional) – Activation function. Defaults to ‘tanh’.

  • overwrite_ok (bool, optional) – Force overwrite if a head with the same name exists. Defaults to False.

  • multilabel (bool, optional) – Enable multilabel classification setup. Defaults to False.

add_fusion(adapter_names: Union[transformers.adapters.composition.Fuse, list], adapter_fusion_config=None, override_kwargs=None)

Adds AdapterFusion to the model with alll the necessary configurations and weight initializations

Parameters
  • adapter_names – a list of adapter names which should be fused

  • adapter_fusion_config (str or dict) –

    adapter fusion configuration, can be either:

    • a string identifying a pre-defined adapter fusion configuration

    • a dictionary representing the adapter fusion configuration

    • the path to a file containing the adapter fusion configuration

  • override_kwargs – dictionary items for values which should be overwritten in the default AdapterFusion configuration

add_multiple_choice_head(head_name, num_choices=2, layers=2, activation_function='tanh', overwrite_ok=False, id2label=None)

Adds a multiple choice head on top of the model.

Parameters
  • head_name (str) – The name of the head.

  • num_choices (int, optional) – Number of choices. Defaults to 2.

  • layers (int, optional) – Number of layers. Defaults to 2.

  • activation_function (str, optional) – Activation function. Defaults to ‘tanh’.

  • overwrite_ok (bool, optional) – Force overwrite if a head with the same name exists. Defaults to False.

add_tagging_head(head_name, num_labels=2, layers=1, activation_function='tanh', overwrite_ok=False, id2label=None)

Adds a token classification head on top of the model.

Parameters
  • head_name (str) – The name of the head.

  • num_labels (int, optional) – Number of classification labels. Defaults to 2.

  • layers (int, optional) – Number of layers. Defaults to 1.

  • activation_function (str, optional) – Activation function. Defaults to ‘tanh’.

  • overwrite_ok (bool, optional) – Force overwrite if a head with the same name exists. Defaults to False.

forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, head=None, return_dict=None, **kwargs)

The DistilBertModelWithHeads forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, num_choices)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using DistilBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

Returns

A ModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (DistilBertConfig) and inputs.

Return type

ModelOutput or tuple(torch.FloatTensor)

Base class for all model outputs as dataclass. Has a __getitem__ that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the None attributes. Otherwise behaves like a regular python dictionary.

Warning

You can’t unpack a ModelOutput directly. Use the to_tuple() method to convert it to a tuple before.

Example:

>>> from transformers import DistilBertTokenizer, DistilBertModelWithHeads
>>> import torch

>>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
>>> model = DistilBertModelWithHeads.from_pretrained('distilbert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
freeze_model(freeze=True)

Freezes all weights of the model.

get_labels(head_name=None)

Returns the labels the given head is assigning/predictin

Parameters
  • head_name – (str, optional) the name of the head which labels should be returned. Default is None.

  • the name is None the labels of the active head are returned (If) –

Returns: labels

get_labels_dict(head_name=None)

Returns the id2label dict for the given hea

Parameters
  • head_name – (str, optional) the name of the head which labels should be returned. Default is None.

  • the name is None the labels of the active head are returned (If) –

Returns: id2label

load_adapter(adapter_name_or_path: str, config: Union[dict, str] = None, version: str = None, model_name: str = None, load_as: str = None, with_head: bool = True, custom_weights_loaders: Optional[List[transformers.adapters.loading.WeightsLoader]] = None, **kwargs) → str

Loads a pre-trained pytorch adapter module from the local file system or a remote location.

Parameters
  • adapter_name_or_path (str) –

    can be either:

    • the identifier of a pre-trained task adapter to be loaded from Adapter Hub

    • a path to a directory containing adapter weights saved using model.saved_adapter()

    • a URL pointing to a zip folder containing a saved adapter module

  • config (dict or str, optional) – The requested configuration of the adapter. If not specified, will be either: - the default adapter config for the requested adapter if specified - the global default adapter config

  • version (str, optional) – The version of the adapter to be loaded.

  • model_name (str, optional) – The string identifier of the pre-trained model.

  • load_as (str, optional) – Load the adapter using this name. By default, the name with which the adapter was saved will be used.

Returns

The name with which the adapter was added to the model.

Return type

str

load_adapter_fusion(adapter_fusion_name_or_path: str, load_as: str = None, custom_weights_loaders: Optional[List[transformers.adapters.loading.WeightsLoader]] = None, **kwargs) → str

Loads a pre-trained pytorch adapter module from the local file system or a remote location.

Parameters
  • adapter_fusion_name_or_path (str) –

    can be either:

    • the identifier of a pre-trained task adapter fusion module to be loaded from Adapter Hub

    • a path to a directory containing adapter weights saved using model.saved_adapter()

    • a URL pointing to a zip folder containing a saved adapter module

  • config (dict or str, optional) – The requested configuration of the adapter fusion. If not specified, will be either: - the default adapter config for the requested adapter fusion if specified - the global default adapter fusion config

  • model_name (str, optional) – The string identifier of the pre-trained model.

  • load_as (str, optional) – Load the adapter using this name. By default, the name with which the adapter was saved will be used.

Returns

The name with which the adapter was added to the model.

Return type

str

pre_transformer_forward()

This method should be called by every adapter-implementing model at the very beginning of the forward() method.

save_adapter(save_directory: str, adapter_name: str, with_head: bool = True, meta_dict: dict = None, custom_weights_loaders: Optional[List[transformers.adapters.loading.WeightsLoader]] = None)

Saves an adapter and its configuration file to a directory so that it can be shared or reloaded using load_adapter().

Parameters
  • save_directory (str) – Path to a directory where the adapter should be saved.

  • adapter_name (str) – Name of the adapter to be saved.

Raises

ValueError – If the given adapter name is invalid.

save_adapter_fusion(save_directory: str, adapter_names: list, custom_weights_loaders: Optional[List[transformers.adapters.loading.WeightsLoader]] = None)

Saves an adapter and its configuration file to a directory so that it can be shared or reloaded using load_adapter().

Parameters
  • save_directory (str) – Path to a directory where the adapter should be saved.

  • adapter_name (str) – Name of the adapter to be saved.

Raises

ValueError – If the given adapter name is invalid.

save_all_adapter_fusions(save_directory: str, meta_dict: dict = None, custom_weights_loaders: Optional[List[transformers.adapters.loading.WeightsLoader]] = None)

Saves all adapters of this model together with their configuration to subfolders of the given location.

Parameters

save_directory (str) – Path to a directory where the adapters should be saved.

save_all_adapters(save_directory: str, with_head: bool = True, meta_dict: dict = None, custom_weights_loaders: Optional[List[transformers.adapters.loading.WeightsLoader]] = None)

Saves all adapters of this model together with their configuration to subfolders of the given location.

Parameters

save_directory (str) – Path to a directory where the adapters should be saved.

set_active_adapters(adapter_setup: Union[list, transformers.adapters.composition.AdapterCompositionBlock], skip_layers: Optional[List[int]] = None)

Sets the adapter modules to be used by default in every forward pass. This setting can be overriden by passing the adapter_names parameter in the foward() pass. If no adapter with the given name is found, no module of the respective type will be activated. In case the calling model class supports named prediction heads, this method will attempt to activate a prediction head with the name of the last adapter in the list of passed adapter names.

Parameters

adapter_setup (list) – The list of adapters to be activated by default. Can be a fusion or stacking configuration.

set_adapter_fusion_config(adapter_fusion_config, override_kwargs=None)

Sets the adapter fusion configuration.

Parameters

adapter_fusion_config (str or dict) –

adapter fusion configuration, can be either:

  • a string identifying a pre-defined adapter fusion configuration

  • a dictionary representing the adapter fusion configuration

  • the path to a file containing the adapter fusion configuration

train_adapter(adapter_setup: Union[list, transformers.adapters.composition.AdapterCompositionBlock])

Sets the model into mode for training the given adapters.

train_fusion(adapter_setup: Union[list, transformers.adapters.composition.AdapterCompositionBlock], unfreeze_adapters=False)

Sets the model into mode for training of adapter fusion determined by a list of adapter names.

DistilBertForMaskedLM

class transformers.DistilBertForMaskedLM(config)

DistilBert Model with a masked language modeling head on top.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (DistilBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

The DistilBertForMaskedLM forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, num_choices)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using DistilBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size].

Returns

A MaskedLMOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (DistilBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Masked language modeling (MLM) loss.

  • logits (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size)) – Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

MaskedLMOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import DistilBertTokenizer, DistilBertForMaskedLM
>>> import torch

>>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
>>> model = DistilBertForMaskedLM.from_pretrained('distilbert-base-uncased')

>>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt")
>>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"]

>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
get_output_embeddings()

Returns the model’s output embeddings.

Returns

A torch module mapping hidden states to vocabulary.

Return type

nn.Module

DistilBertForSequenceClassification

class transformers.DistilBertForSequenceClassification(config)

DistilBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (DistilBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None)

The DistilBertForSequenceClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, num_choices)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using DistilBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • labels (torch.LongTensor of shape (batch_size,), optional) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

A SequenceClassifierOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (DistilBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) – Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

SequenceClassifierOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
>>> import torch

>>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
>>> model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits

DistilBertForQuestionAnswering

class transformers.DistilBertForQuestionAnswering(config)

DistilBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits).

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (DistilBertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, return_dict=None)

The DistilBertForQuestionAnswering forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, num_choices)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using DistilBertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices), optional) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,

    • 0 for tokens that are masked.

    What are attention masks?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional) –

    Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]:

    • 1 indicates the head is not masked,

    • 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, num_choices, hidden_size), optional) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • output_attentions (bool, optional) – Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.

  • output_hidden_states (bool, optional) – Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.

  • return_dict (bool, optional) – Whether or not to return a ModelOutput instead of a plain tuple.

  • start_positions (torch.LongTensor of shape (batch_size,), optional) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

A QuestionAnsweringModelOutput (if return_dict=True is passed or when config.return_dict=True) or a tuple of torch.FloatTensor comprising various elements depending on the configuration (DistilBertConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) – Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

  • start_logits (torch.FloatTensor of shape (batch_size, sequence_length)) – Span-start scores (before SoftMax).

  • end_logits (torch.FloatTensor of shape (batch_size, sequence_length)) – Span-end scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) – Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) – Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

QuestionAnsweringModelOutput or tuple(torch.FloatTensor)

Example:

>>> from transformers import DistilBertTokenizer, DistilBertForQuestionAnswering
>>> import torch

>>> tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
>>> model = DistilBertForQuestionAnswering.from_pretrained('distilbert-base-uncased')

>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors='pt')
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])

>>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
>>> loss = outputs.loss
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits