DistilBERT¶
The DistilBERT model was proposed in the blog post Smaller, faster, cheaper, lighter: Introducing DistilBERT, a distilled version of BERT, and the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. DistilBERT is a small, fast, cheap and light Transformer model trained by distilling Bert base. It has 40% less parameters than bert-base-uncased, runs 60% faster while preserving over 95% of Bert’s performances as measured on the GLUE language understanding benchmark.
Note
This class is nearly identical to the PyTorch implementation of DistilBERT in Huggingface Transformers. For more information, visit the corresponding section in their documentation.