BERT

The BERT model was proposed in BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova. It is a bidirectional transformer pre-trained using a combination of masked language modeling objective and next sentence prediction.

Note

This class is nearly identical to the PyTorch implementation of BERT in Huggingface Transformers. For more information, visit the corresponding section in their documentation.

BertConfig

class transformers.BertConfig(vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act='gelu', hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, gradient_checkpointing=False, **kwargs)

This is the configuration class to store the configuration of a BertModel. It is used to instantiate an BERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BERT bert-base-uncased architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Parameters
  • vocab_size (int, optional, defaults to 30522) – Vocabulary size of the BERT model. Defines the different tokens that can be represented by the inputs_ids passed to the forward method of BertModel.

  • hidden_size (int, optional, defaults to 768) – Dimensionality of the encoder layers and the pooler layer.

  • num_hidden_layers (int, optional, defaults to 12) – Number of hidden layers in the Transformer encoder.

  • num_attention_heads (int, optional, defaults to 12) – Number of attention heads for each attention layer in the Transformer encoder.

  • intermediate_size (int, optional, defaults to 3072) – Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.

  • hidden_act (str or function, optional, defaults to “gelu”) – The non-linear activation function (function or string) in the encoder and pooler. If string, “gelu”, “relu”, “swish” and “gelu_new” are supported.

  • hidden_dropout_prob (float, optional, defaults to 0.1) – The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.

  • attention_probs_dropout_prob (float, optional, defaults to 0.1) – The dropout ratio for the attention probabilities.

  • max_position_embeddings (int, optional, defaults to 512) – The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).

  • type_vocab_size (int, optional, defaults to 2) – The vocabulary size of the token_type_ids passed into BertModel.

  • initializer_range (float, optional, defaults to 0.02) – The standard deviation of the truncated_normal_initializer for initializing all weight matrices.

  • layer_norm_eps (float, optional, defaults to 1e-12) – The epsilon used by the layer normalization layers.

  • gradient_checkpointing (bool, optional, defaults to False) – If True, use gradient checkpointing to save memory at the expense of slower backward pass.

Example:

>>> from transformers import BertModel, BertConfig

>>> # Initializing a BERT bert-base-uncased style configuration
>>> configuration = BertConfig()

>>> # Initializing a model from the bert-base-uncased style configuration
>>> model = BertModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

BertTokenizer

class transformers.BertTokenizer(vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token='[UNK]', sep_token='[SEP]', pad_token='[PAD]', cls_token='[CLS]', mask_token='[MASK]', tokenize_chinese_chars=True, **kwargs)

Constructs a BERT tokenizer. Based on WordPiece.

This tokenizer inherits from PreTrainedTokenizer which contains most of the methods. Users should refer to the superclass for more information regarding methods.

Parameters
  • vocab_file (string) – File containing the vocabulary.

  • do_lower_case (bool, optional, defaults to True) – Whether to lowercase the input when tokenizing.

  • do_basic_tokenize (bool, optional, defaults to True) – Whether to do basic tokenization before WordPiece.

  • never_split (Iterable, optional, defaults to None) – Collection of tokens which will never be split during tokenization. Only has an effect when do_basic_tokenize=True

  • unk_token (string, optional, defaults to “[UNK]”) – The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead.

  • sep_token (string, optional, defaults to “[SEP]”) – The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens.

  • pad_token (string, optional, defaults to “[PAD]”) – The token used for padding, for example when batching sequences of different lengths.

  • cls_token (string, optional, defaults to “[CLS]”) – The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens.

  • mask_token (string, optional, defaults to “[MASK]”) – The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict.

  • tokenize_chinese_chars (bool, optional, defaults to True) – Whether to tokenize Chinese characters. This should likely be deactivated for Japanese: see: https://github.com/huggingface/transformers/issues/328

build_inputs_with_special_tokens(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int]

Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:

  • single sequence: [CLS] X [SEP]

  • pair of sequences: [CLS] A [SEP] B [SEP]

Parameters
  • token_ids_0 (List[int]) – List of IDs to which the special tokens will be added

  • token_ids_1 (List[int], optional, defaults to None) – Optional second list of IDs for sequence pairs.

Returns

list of input IDs with the appropriate special tokens.

Return type

List[int]

create_token_type_ids_from_sequences(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) → List[int]

Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format:

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence    | second sequence |

if token_ids_1 is None, only returns the first portion of the mask (0’s).

Parameters
  • token_ids_0 (List[int]) – List of ids.

  • token_ids_1 (List[int], optional, defaults to None) – Optional second list of IDs for sequence pairs.

Returns

List of token type IDs according to the given sequence(s).

Return type

List[int]

get_special_tokens_mask(token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False) → List[int]

Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer prepare_for_model method.

Parameters
  • token_ids_0 (List[int]) – List of ids.

  • token_ids_1 (List[int], optional, defaults to None) – Optional second list of IDs for sequence pairs.

  • already_has_special_tokens (bool, optional, defaults to False) – Set to True if the token list is already formatted with special tokens for the model

Returns

A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.

Return type

List[int]

save_vocabulary(vocab_path)

Save the sentencepiece vocabulary (copy original file) and special tokens file to a directory.

Parameters

vocab_path (str) – The directory in which to save the vocabulary.

Returns

Paths to the files saved.

Return type

Tuple(str)

BertModel

class transformers.BertModel(config)

The bare Bert Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in Attention is all you need by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

To behave as an decoder the model needs to be initialized with the is_decoder argument of the configuration set to True; an encoder_hidden_states is expected as an input to the forward pass.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, adapter_names=None)

The BertModel forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

Returns

last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)):

Sequence of hidden-states at the output of the last layer of the model.

pooler_output (torch.FloatTensor: of shape (batch_size, hidden_size)):

Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training.

This output is usually not a good summary of the semantic content of the input, you’re often better with averaging or pooling the sequence of hidden-states for the whole input sequence.

hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True):

Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True):

Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

tuple(torch.FloatTensor) comprising various elements depending on the configuration (BertConfig) and inputs

Example:

>>> from transformers import BertTokenizer, BertModel
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertModel.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
get_input_embeddings()

Returns the model’s input embeddings.

Returns

A torch module mapping vocabulary to hidden states.

Return type

nn.Module

set_input_embeddings(value)

Set model’s input embeddings

Parameters

value (nn.Module) – A module mapping vocabulary to hidden states.

BertModelWithHeads

class transformers.BertModelWithHeads(config)

Bert Model transformer with the option to add multiple flexible heads on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, adapter_names=None, head=None)

The BertModelWithHeads forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape {0}) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape {0}, optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape {0}, optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape {0}, optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

BertForPreTraining

class transformers.BertForPreTraining(config)

Bert Model with two heads on top as done during the pre-training: a masked language modeling head and a next sentence prediction (classification) head. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, adapter_names=None, **kwargs)

The BertForPreTraining forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

  • next_sentence_label (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids docstring) Indices should be in [0, 1]. 0 indicates sequence B is a continuation of sequence A, 1 indicates sequence B is a random sequence.

  • kwargs (Dict[str, any], optional, defaults to {}) – Used to hide legacy arguments that have been deprecated.

Returns

loss (optional, returned when labels is provided) torch.FloatTensor of shape (1,):

Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.

prediction_scores (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size))

Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

seq_relationship_scores (torch.FloatTensor of shape (batch_size, 2)):

Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True):

Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True):

Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

tuple(torch.FloatTensor) comprising various elements depending on the configuration (BertConfig) and inputs

Examples:

>>> from transformers import BertTokenizer, BertForPreTraining
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)

>>> prediction_scores, seq_relationship_scores = outputs[:2]
get_output_embeddings()

Returns the model’s output embeddings.

Returns

A torch module mapping hidden states to vocabulary.

Return type

nn.Module

BertForMaskedLM

class transformers.BertForMaskedLM(config)

Bert Model with a language modeling head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, **kwargs)

The BertForMaskedLM forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Labels for computing the masked language modeling loss. Indices should be in [-100, 0, ..., config.vocab_size] (see input_ids docstring) Tokens with indices set to -100 are ignored (masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]

  • kwargs (Dict[str, any], optional, defaults to {}) – Used to hide legacy arguments that have been deprecated.

Returns

masked_lm_loss (optional, returned when labels is provided) torch.FloatTensor of shape (1,):

Masked language modeling loss.

prediction_scores (torch.FloatTensor of shape (batch_size, sequence_length, config.vocab_size))

Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).

hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True):

Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True):

Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

tuple(torch.FloatTensor) comprising various elements depending on the configuration (BertConfig) and inputs

Example:

>>> from transformers import BertTokenizer, BertForMaskedLM
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForMaskedLM.from_pretrained('bert-base-uncased')

>>> input_ids = tokenizer("Hello, my dog is cute", return_tensors="pt")["input_ids"]

>>> outputs = model(input_ids, labels=input_ids)
>>> loss, prediction_scores = outputs[:2]
get_output_embeddings()

Returns the model’s output embeddings.

Returns

A torch module mapping hidden states to vocabulary.

Return type

nn.Module

BertForNextSentencePrediction

class transformers.BertForNextSentencePrediction(config)

Bert Model with a next sentence prediction (classification) head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, next_sentence_label=None, output_attentions=None, output_hidden_states=None, adapter_names=None)

The BertForNextSentencePrediction forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • next_sentence_label (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see input_ids docstring) Indices should be in [0, 1]. 0 indicates sequence B is a continuation of sequence A, 1 indicates sequence B is a random sequence.

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when next_sentence_label is provided):

Next sequence prediction (classification) loss.

seq_relationship_scores (torch.FloatTensor of shape (batch_size, 2)):

Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).

hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True):

Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True):

Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

tuple(torch.FloatTensor) comprising various elements depending on the configuration (BertConfig) and inputs

Examples:

>>> from transformers import BertTokenizer, BertForNextSentencePrediction
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')

>>> loss, logits = model(**encoding, next_sentence_label=torch.LongTensor([1]))
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random

BertForSequenceClassification

class transformers.BertForSequenceClassification(config)

Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, adapter_names=None)

The BertForSequenceClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when label is provided):

Classification (or regression if config.num_labels==1) loss.

logits (torch.FloatTensor of shape (batch_size, config.num_labels)):

Classification (or regression if config.num_labels==1) scores (before SoftMax).

hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True):

Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True):

Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

tuple(torch.FloatTensor) comprising various elements depending on the configuration (BertConfig) and inputs

Example:

>>> from transformers import BertTokenizer, BertForSequenceClassification
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
>>> outputs = model(**inputs, labels=labels)
>>> loss, logits = outputs[:2]

BertForMultipleChoice

class transformers.BertForMultipleChoice(config)

Bert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, adapter_names=None)

The BertForMultipleChoice forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, num_choices, sequence_length), optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, num_choices, sequence_length), optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for computing the multiple choice classification loss. Indices should be in [0, ..., num_choices-1] where num_choices is the size of the second dimension of the input tensors. (see input_ids above)

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided):

Classification loss.

classification_scores (torch.FloatTensor of shape (batch_size, num_choices)):

num_choices is the second dimension of the input tensors. (see input_ids above).

Classification scores (before SoftMax).

hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True):

Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True):

Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

tuple(torch.FloatTensor) comprising various elements depending on the configuration (BertConfig) and inputs

Example:

>>> from transformers import BertTokenizer, BertForMultipleChoice
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForMultipleChoice.from_pretrained('bert-base-uncased')

>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> choice0 = "It is eaten with a fork and a knife."
>>> choice1 = "It is eaten while held in the hand."
>>> labels = torch.tensor(0).unsqueeze(0)  # choice0 is correct (according to Wikipedia ;)), batch size 1

>>> encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='pt', padding=True)
>>> outputs = model(**{k: v.unsqueeze(0) for k,v in encoding.items()}, labels=labels)  # batch size is 1

>>> # the linear classifier still needs to be trained
>>> loss, logits = outputs[:2]

BertForTokenClassification

class transformers.BertForTokenClassification(config)

Bert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, adapter_names=None)

The BertForTokenClassification forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • labels (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) – Labels for computing the token classification loss. Indices should be in [0, ..., config.num_labels - 1].

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) :

Classification loss.

scores (torch.FloatTensor of shape (batch_size, sequence_length, config.num_labels))

Classification scores (before SoftMax).

hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True):

Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True):

Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

tuple(torch.FloatTensor) comprising various elements depending on the configuration (BertConfig) and inputs

Example:

>>> from transformers import BertTokenizer, BertForTokenClassification
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForTokenClassification.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> labels = torch.tensor([1] * inputs["input_ids"].size(1)).unsqueeze(0)  # Batch size 1

>>> outputs = model(**inputs, labels=labels)
>>> loss, scores = outputs[:2]

BertForQuestionAnswering

class transformers.BertForQuestionAnswering(config)

Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute span start logits and span end logits). This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

Parameters

config (BertConfig) – Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

forward(input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, start_positions=None, end_positions=None, output_attentions=None, output_hidden_states=None, adapter_names=None)

The BertForQuestionAnswering forward method, overrides the __call__() special method.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Parameters
  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) –

    Indices of input sequence tokens in the vocabulary.

    Indices can be obtained using transformers.BertTokenizer. See transformers.PreTrainedTokenizer.encode() and transformers.PreTrainedTokenizer.__call__() for details.

    What are input IDs?

  • attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

    What are attention masks?

  • token_type_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]: 0 corresponds to a sentence A token, 1 corresponds to a sentence B token

    What are token type IDs?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional, defaults to None) –

    Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • head_mask (torch.FloatTensor of shape (num_heads,) or (num_layers, num_heads), optional, defaults to None) – Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]: 1 indicates the head is not masked, 0 indicates the head is masked.

  • inputs_embeds (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Optionally, instead of passing input_ids you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert input_ids indices into associated vectors than the model’s internal embedding lookup matrix.

  • encoder_hidden_states (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size), optional, defaults to None) – Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder.

  • encoder_attention_mask (torch.FloatTensor of shape (batch_size, sequence_length), optional, defaults to None) – Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]: 1 for tokens that are NOT MASKED, 0 for MASKED tokens.

  • output_attentions (bool, optional, defaults to None) – If set to True, the attentions tensors of all attention layers are returned. See attentions under returned tensors for more detail.

  • start_positions (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

  • end_positions (torch.LongTensor of shape (batch_size,), optional, defaults to None) – Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence are not taken into account for computing the loss.

Returns

loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided):

Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.

start_scores (torch.FloatTensor of shape (batch_size, sequence_length,)):

Span-start scores (before SoftMax).

end_scores (torch.FloatTensor of shape (batch_size, sequence_length,)):

Span-end scores (before SoftMax).

hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True):

Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

Hidden-states of the model at the output of each layer plus the initial embedding outputs.

attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True):

Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

Return type

tuple(torch.FloatTensor) comprising various elements depending on the configuration (BertConfig) and inputs

Example:

>>> from transformers import BertTokenizer, BertForQuestionAnswering
>>> import torch

>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForQuestionAnswering.from_pretrained('bert-base-uncased')

>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3])

>>> outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
>>> loss, start_scores, end_scores = outputs[:3]